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BENDING OF THIN CIRCULAR RINGS
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Abstract-The basic equations for the bending of circular rings are deduced from a set of accurate equations
for circular cylindrical shells. The advantages in using these differential equations as compared with the
customary energy method are shown through examples. It turns out that solutions of these equations can be
as easily obtained as solutions of the well-known differential equation for straight beams. It is also shown that
the center line of the ring is essentially inextensible, which is assumed ab initio in the classical ring theory.

NOMENCLATURE
a radius of midsurface
b width of the ring

c' h'/12a'
h wall thickness
I moment of inertia
P load

u,v,w axial, circumferential, and radial displacements of midsurface (Fig. 3)
x,y,z axial, circumferential, and radial coordinates

X, Y,Z surface loads per unit area in axial, tangential and radial directions (Fig. 2)

D Eh' fl I' 'd' 8= 12(1- v') exura flgl lty [ , 9]

K =Eh/l- v' =extensional rigidity [8,9]
E,G,v Young's modulus, shear modulus and Poisson's ratio

M"NM"NM,·S" M
S
21} stress couples and resultants per unit length (Fig. 2,3) [8,9]

h 2, h 2

Q" Q, transverse stress resultants per unit length (Fig. 2) [8,9]
M =bM, =bending moment

a,e dimensionless midsurface coordinates along the lines of curvatures (Fig. 1, 2)
a = x/a, e= y/a

€" €" €12 normal and shearing strains in midsurface [8,9]
7)" 7)" T bending and twisting strains [8,9]

(J'a, (J'p, Tap} stresses and strains of an arbitrary point [9]
ea. ef31 eo.{3

Wa , W. components of rotation w.r.t. parametric lines a and e respectively [9]
w =w",
V' = (a'/aa')+(a'/ae').

INTRODUCTION

The problem of the bending of a thin ring in its plane was solved nearly a century ago [1, 2] and
because of its importance in practical applications, has been a major subject in many texts on
structural analysis [3] and in other mechanics courses [4,5]. In solving the problem, it may be
noted that two features are unique-the use of Castigliano's theorem and the adoption of the
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notion of the inextensibility of the center line of the ring [4-7]. Although this notion has been
commonly accepted, its general validity has not yet been established except as illustrated through
some specific examples [7]. As for the method traditionally used in solving the ring problem, it is a
striking contrast to problems of bending of straight beams for which, as we know, differential
equation rather than the energy method is often used in the texts [7]. Surprisingly, for ring
problems, solutions by differential equations have not received the attention they truly deserve.
In fact, it turns out that the differential equation method is not only more direct but also easier to
grasp and understand then the energy method based on Castigliano's theorem. Solutions of these
equations can be as readily obtained as solutions of straight beam problems. The lack of such an
approach is, perhaps due to the fact that the three basic equations required for solving the ring
problem are scattered under different headings in the literature and have not been tied together
for ready application to bending problems. These equations are presented in this paper. They can
be deduced in a fairly straightforward manner from the basic equations of an accurate shell
theory [8,9, 10]. The validity of the notion of inextensibility of the center line of the ring will also
be established. The advantages in using these equations will be shown through several illustrative
examples.

ANALYSIS

As is well known the classical shell theory is based on the Kirchhoff assumption: material
normals to the undeformed middle surface remain normal to the deformed middle surface of the
shell and retain their length. The formulation of the basic equations for thin elastic shells and, in
particular, circular cylindrical shells, due to their importance in application and their exhibition of
nearly every type of behavior found in general shell theory, has received repeated attention in the
literature [8,9, 11, 12]. As for the question of the validity of the Kirchhoff assumption, John
recently has given a mathematical proof of what was heretofore only intuitive assumption of the
classical shell theory [l4]. John's results were reexamined by Koiter[15]. In the case of the
bending of thin rings, which is a special case of circular cylindrical shells, the Kirchhoff
assumption may be phrased as "plane sections remain plane after deformation."

In a recent paper [8] a set of accurate equations which govern the deformation of circular
cylindrical shells is presented. It is shown [8,9] that these equations are as accurate as they can
be within the scope of the Kirchhoff assumption. In order to make the present paper reasonably
self-contained, these equations derived in [8], which for the reasons just mentioned will be
employed to deduce the basic equations for the bending of circular rings, are again presented in
the Appendix. (It is shown in [8] that all the known equations, such as Donnell, Novozhilov,
Morley, extended Donnell and others can be readily obtained from the fourth order equation
derived in [8]. Also its solutions can be easily expressed in simple closed forms [8,9]).

Aside from John's rigorous mathematical proof, the validity of the assumption "plane
sections remain plane" for the bending of curved bars may also be visualized in a less rigorous
and perhaps more physical way. We recall the three simple but fundamentally important
examples given in Timoshenko and Goodier's Theory of Elasticity [13]. These examples all
belong to plane stress problems in elasticity theory.
They are:

(I) Pure bending of curved bars (p. 72[13]).
(2) A curved bar bent by a tangential force applied at one end in radial direction with the other

end of the bar constrained (p. 83 [13]).
(3) A curved bar bent by a normal force applied at one end with the other end constrained

(p. 88 [13]).
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Having the solutions of these three problems, the solutions for general loading can be obtained by
superposition. Comparison of results [13] from the exact elasticity theory of plane stress with
those from the simple theory, based on the hypothesis that plane sections remain plane during
bending, shows that for these three examples the simple theory does give very satisfactory
results even when the ratio of the width of the bar to its radius is not very small. These results
further justify the basic Kirchhoff hypothesis for the bending of thin shells and curved bars.

DERIVATION OF BASIC EQUATIONS

When a ring is loaded by forces applied at the boundary, parallel to the plane of the ring, the
stress components are zero on both faces of the ring (Fig. 1). Such a state of stress is called plane
stress. Thus according to plane stress theory, Nt. MI, 8" 82 , M J2, M 21 and QJ in equations (25)
may be set equal to zero (same notations as in [8-10)). Setting N, = 0 and M1 := 0, we obtain

or

(1)

From 8 J "" 0 and 8 2 "" 0

(2)

is obtained.
Setting M 12 , M2 ! and Q, equal to zero in equation (25) does not yield any equation in addition to

equations (1) and (2) already obtained. Applying equations (1) and (2), the rest of the equations in
equation (25) may be written as

(3)

j
Fig. I. Circular ring.
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z

Fig. 2. Stress resultants and surface loads acting on differential element.

w

Fig. 3. Stress couples acting on differential element and midsurface displacements.

It is now appropriate to note that in the theory of thin rings hla :s 1/10, thus c 2 < 10-3 and c 2 is
always a small number as compared with unity. Thus, equation (3) may be written as

(4)

(5)

(6)

Three of the five equations of equilibrium (26) are identically satisfied and the other two
equations of equilibrium are

aQN---aZ=Oae
(7)

aN
80+ Q+a¥=O.

Substituting Nand Q from equations (4) and (6) into equations (7) yields

(8)

(9)
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As the derivatives of the normal deflection w in case of small deformations are of the same order
of magnitude as the w itself, which can also be verified directly from the solution of a problem,
and the coefficient cZ is always small as compared with unity, the second term on the right side of
equation (8) may be neglected as compared with the first term on the same side of the equation
without any significant loss in accuracy of the final solutions. Then equation (8) may be written in
the form

In the absence of surface load Y, which is the usual case, equation (9) becomes

a (av )ao ao +w =0.

(10)

(11)

CONDITIONS FOR THE INEXTENSIBLE DEFORMATION OF CIRCULAR RINGS

In the literature, as mentioned previously, the ring theory is based on the assumption that
the center line of a ring is inextensible and the strain energy is primarily due to bending. From
equations (10) and (11) the validity of this assumption can now be established. When a ring is under
external loads applied at the ends of the ring or under concentrated surface loads or both, Z is zero
everywhere except where concentrated surface loads are applied and equation (10) reduces to

av
ao +w =0. (12)

This result shows that the tangential strain of the center line of a ring is zero (Ez = 0) as seen from
equation (24) and thus establishes the validity of the basic assumption of the classical ring theory.

As will be illustrated later in the examples, the radial displacement of the ring can be obtained
from equation (5), and equation (12) is used primarily for determining the tangential displacement v.
Equation (5) shows that the order of magnitude of the radial displacement w is (11cz)(MzIEh). If
the order of magnitude of the term Za 2/Eh in equation (10) is taken as 0(1), then the term
(l/cz)(MzIEh)(Mz- Za z, see examples) is of O(l/c z). Thus the term ZazlEh in equation (10) has a
magnitude of O(cz) relative to the w term in the same equation. When the tangential displacement v,
provided vi' 0, is calculated from equation (10), the term ZazlEh makes a negligible contribution
to the tangential displacement v and thus may be neglected. Hence in the case Z i' 0, the condition
for inextensible deformation (12) is again obtained.

BASIC EQUATIONS FOR THE BENDING OF CIRCULAR RINGS

The three basic equations for the bending of circular rings are as follows:

dZw Ma 2

(13)dO z + w =EI

dv
dO + w =0 (14)

w =±(~;-v). (15)
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Where I bh 3 f12 = moment of inertia, b = width of the ring and M is the bending moment
(M = bM2). M, wand v are now assumed to be functions of (J only which is the case for bending
of thin rings. Equation (13) is obtained from equation (5). Equation (14) represents the condition
thatthe center line ofthe ring is inextensible as established in the last section (E2 = 0). Equation (15)

represents the rotation of radial cross sections of the ring about its longitudinal axis (a coordinate
line) as given by equation (21). It will be shown in the next section that these three equations (3),
(14) and (15) are sufficient for the complete solution of problems of the bending of circular rings.
The tangential force N and the shearing force Q may be readily determined from equations (4) and
(6) or from the conditions of static equilibrium of the ring. The normal stress Ue of the ring may be
obtained from equations (22), (23), (4), (l) and (13) as

When the thickness of the ring is small in comparison with a, we obtain

Nb Mz a
(7'e =: A T a +2

(16)

(7)

where A = bh = cross sectional area of the ring.
It may be noted that for an infinitely large radius a the preceding equations (13), (14), (15) and

(17) reduce, as they should, to the well-known equations for straight beam

d2 w M
EI

dw
w = dx'

We have mentioned in the introduction that a unique feature of the solution of ring problems
in the literature is the use of the energy method in marked contrast to problems of straight beams.
for which differential equations are often used. In the next section we shall show that solutions
for bending problems of circular rings can be readily obtained through the use of equations (13),
(14) and (15). These equations are particularly useful when the deflection curve of the ring is
required. The integrations of equations (13), (14) and (15) are as simple as that of the equation for
the deflection of straight beams.

For many practical applications the general solution of equation (13) can be written in the form

w = A cos (J + B sin 8 + C, (J cos (J + C2 (J sin (} + woo (8)

Substituting the precedingexpression (16) into equation (14), the tangential displacement v may be
expressed as

v - A sin 8 + B cos (J - C(cos (J + 8 sin 8)- Cz(sin 8 - (J cos 8) - wo8 + Vo (19)

where constants A, B, C
"

C2 , WO and Vo can be determined from equation (13) and the end
conditions of the ring as will be illustrated in the following section.
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Example 1
Consider one quadrant of the ring built in at the lower end and loaded at the upper end by a

vertical load P (Fig. 4). The bending moment at any cross section is

M=-Pacos8.

Taking w = A cos 8 +B sin 8 + C 8 cos 8 +C28 sin 8 +Ao and substituting in (13), we
obtain

-Pa'
C, = A o = 0, and C2 = 2El .

Thus

w = A cos 8 +B sin 8 +C2 8 sin 8.

Fig. 4. Quadrant of a circular ring with radial load.

Constants A and B can be determined from the following boundary conditions of the ring.

dw
w = 0, d8 = 0 for 8 = O.

From these two conditions we obtain

A = B =0,

-Pa' .
w =m--8 sm8.

The tangential displacement v is found from

dv
-+w =0
d8

or

dv Pa' .
d8 = El () sm 8.

Thus

Pa' .
v = El (sm () - 8 cos ()) + vo.
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Applying the end condition v == 0 for 8 == 0 we obtain Va = 0 and

Pa
3

• e 8)v == El (Sin cos .

Example 2
Consider one quadrant of the ring built in at the upper end and loaded at the other end by a

vertical load P (Fig. 5). The bending moment at any cross section is

M = -Pa(l cos 8}.

p

Fig. 5. Quadrant of a circular ring with tangential load.

Taking w = A cos e+B sin e+ C1 ecos e+ C2 esin e+Ao and substituting in (13) we obtain

Applying the following end conditions

dw TT
de == 0, for 8 ="2

and

TT
IV == 0, for e == 2"

we obtain

Thus

IV == ;;; [cos e+ (2-¥) sin 8 + esin e 2]'

From dvlde == -IV there follows

Pa 3 [ (TT) . TTJ
V = 2EI 28 +8 cos e- 2' - 2 cos e- 2 Sin 8 - 2+2" + Va.
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Since v = 0 for 8 = 7T /2, we have

and

Pa 3 (2 2 7T.. 2 )v = 2EI - 7T + 8 + 8 cos 8 - 2 cos 8 - 2 sm 8 + cos 8 .

From equation (15) there follows

1 dw v Pa 2
•

w =---- =-(7T - 2-28 +2 sm 8).
a d8 a 2EI

147

Example 3
Consider a semicircular ring built in at one end and loaded at the other end (Fig. 6). The

bending moment at any cross section is

M = Pa(l-cos 8).

Taking w = A cos 8 + B sin (J + C8 sin (J + Wo and substituting w into equation (13) yields

Wo Pa 3

C =-2 and wo = EI·

End conditions are w = 0 and dwId8 = 0 at 8 = 7T 12.
Hence, we find that

and

A = Wo, B =E wo
2

Pa 3 (1 8 7T. 1 . )w = ill + cos + 2 Sin 8 - 28 sm 8 .

From dv Id8 + w = 0, yields

P

Fig. 6. Semicircular wing with one section clamped.
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Since v = 0 for e= 1T /2, we have Vo = 1TQ and

P 3

U 2;[ [21T -20 - sin 0 +(1T - O)cos 0].

Example 4
Consider a semicircular ring clamped at both ends and loaded along the axis of symmetry with

a concentrated load P (Fig. 7). The bending moment at an arbitrary cross section is

M = f a(I - cos 8) - Ha sin 8.

Taking

W =A cos 0 + B sin e+COcos 8 + C2 8 sin e+ Wo

and substituting w in (13) yields

Pa' a 3H - Pa'
Wo = 2EI' C = 2EI and C2 = 4EI .

From the end condition

w = 0 for 8 =0, there follows A = woo

From equation (14) we obtain

v -[A sin 8 - B cos 8 + C,(cos 8 +8 sin 8) + C2(sin 8 ecos 8) + w0 8] + uo.

p
"2

IB
I
I
I
I
I
I
I

(lI
Mal

I
I
I
1// e__+_ -'----t-.:.H:.-

I
I
I
I

Fig. 7. Semicircular ring with two sections clamped.
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From the end conditions

v = 0 for 8 = 0 and 8 =!!:
2

we obtain

B -C+ vo=O

and

Applying the end condition

w = 0 for 8 = !!:, 2

we obtain from equation (15)

Solution of the preceding three algebraic equations yields

Thus the radial displacement at point B is

149

(a)

(b)

(c)

BASIC EQUATIONS FOR LONG TUBES
As a secondary result of our study we derive the governing equations for a long circular tube

under the action of lateral loads uniformly distributed along the axis of the cylinder. In this case it
is a state of plane strain. Thus the displacement along the axis of the tube is zero and
displacements v and ware functions of 8 only. Following procedures similar to the deductions of
the basic equations for the ring, the following equations for the bending of long tubes can be
obtained

where M represents bending moment per unit length along the axis of the tube.
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CONCLUSIONS

Although the ring problem was solved nearly a century ago, its solution by differentia!
equations has not received the attention it truly deserves. Also the general validity of the basic
assumption in ring theory, namely that the center line of the ring is inextensible, has not been
established except as illustrated through some specific examples [7]. Because of the importance
of the ring problem in practical applications and the advantages of the differential equations over
the customary Castigliano's theorem, we presented the three basic differential equations for the
complete solution of the ring problem. Further, in the paper the validity of the notion of the
inextensibility of the center line of the ring is established. As a secondary result of our study the
governing equations for long circular tubes are also presented.
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APPENDIX

The three displacement components UIT, U!3' and Uz of an arbitrary point of the shell can be
written as [9, 10J

UIT U + ZW8. U8 =: V - ZWIT • Uz =: W

where the components of rotation WIT, W8 about the parmetric lines a, 8 are [9, IOJ

(20)

1 (iw v
W =:----

" a (ie a'
-1 (iw

w(~=--

a aa
(21)

and the stress-strain relations can be taken in the form

(22)

The components of strain eIT , e!3. and eIT!3 at an arbitrary point of the shell are related to the
midsurface displacements by [9,10J
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e" =: 1- (au _~ a2~)
a aa a aa

The strain displacement relations of the middle surface of the shell are (8,10]:

1 au
€l=:-­

a aa
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(23)

(24)

The stress resultants and couples are related to the midsurface displacements through the
stress-strain relations as

Sl=:K(l-v)[au+~_ h
2,(a2

w _~)]
2a ao aa 12a- aaao aa

S =: K(l- v) [au+~+~ (a
2

w + au)]
2 2a ao aa 12a 2 aaao ao
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M =_DO-v)[au_av 2 a2 w]
21 2a 2 00 oa + aaoO

Q, D [(1 _ v) iJ2 v _ aw_~ V2 w]
- a 3 oa 2 00 (/0 ..

(25)

The coefficient 0 [8] which is always small (0 (915) c2
) as compared with unity has been omitted

in equation (20). The following equations of static equilibrium are well known:

OM l2 _ aM2 _ aQ, = 0
(/a iJO -

(26)


